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A COMPARISON OF THE EXPERIMENTAL SUBSONIC PRESSURE DISTRIBUTIONS ABOUT
SEVERAL BODIES OF REVOLUTION WITH PRESSURE DISTRIBUTIONS .
COMPUTED BY MEANS OF THE LINEARIZED THEORY!

By CrareNce W. MATTHEWS

SUMMARY

An analysis i3 made of the effects of compressibility on the
pressure coefficients about several bodies of revolution by com-
paring experimentally determined pressure coefficients with
corresponding pressure coefficiends calculated by the use of the
linearized equations of compressible flow. The results show
that the theoretical methods predict the subsonic pressure-
coefficient changes over the central part of the body but do not
predict the pressure-coefficient changes near the nose. Eaz-
trapolation of the linearized subsonic theory into the mized
subsonic-supersonic flow region fails to predict a rearward
movement of the negative pressure-coefficient peak whick occurs
after the eritical stream Mach number has been attained. Two
equations developed from a constderation of the subsonic com-
pressible flow about a prolate spheroid are shown fo predict,
approzimately, the change with Mach number of the subsonic
pressure coefficients for regular bodies of revolution of fineness
ratio 6 or greafer.

INTRODUCTION

A number of papers have been published concerning the
theoretical aspect of the effects of compressibility on the
flow over bodies of revolution (refs. 1 to 4). In the present
investigation these theoretical methods are applied to the
analysis of experimental data. Such an analysis should
contribute to the basic knowledge of subsonic three-
dimensional flow.

Two prolate spheroids of fineness ratios 6 and 10, an ogival

body, and a prolate spheroid with an annular bump near the
nose were tested in this investigation. The experimental
pressures about the two prolate spheroids are compared with
the pressures computed by the linearized compressible-flow
theory. Several relations developed from theoretical con-
siderations of the flow about a prolate spheroid are presented
for correcting the incompressible pressure coefficients of
regular bodies of fineness ratios 6 to 10 for the effects of
compressibility in the suberitical flow range. Results
obtained from these relations are also compared with corre-
sponding experimental pressure coefficients.

SYMBOLS
b maximum radius of body
Cy normal-force coefficient based on plan-form area of

ellipse

1 Su, e3 NACA TN 2519, “A. Comparison of the E
of the Linearized Theory” by Clarence W. Matthews, 1952,

fineness ratio of body, I/2b

J
l total length of body (see fig. 1)
M, critical Mach number
M, free-stream Mach number
D1 local static pressure
Do free-stream static pressure
P pressure coefficient, Zlh—po
37
r local radius of body
S(z) cross-sectional area of body of revolution
u component of local velocity parallel to free stream
U =~ free-stream velocity
v " component of local velocity in vertical plane perpen-
dicular to free stream
Vv " total local velocity
w component; of local velocity perpendicular to % and »

coordinate along major axis of body
angle of attack

ratio of specific heat at constant pressure to specific
heat at constant volume

p density

@ velocity potential

u, &, o - ellipsoidal coordinates (see ref. 5)

Subscripts:

¢ compressible value

7 incompressible value

cr * critical value

st incompressible value of flow about hypothetical
stretiched body

MODELS -

Sketches of the bodies of revolution tested, which show
the locations of the pressure orifices and other pertinent
details, are presented in figure 1. The ordinates of the
typical transonic or ogival body and the prolate spheroid
with an annular bump are given in table I. The ordinates
of the section of the sting support, which is a part of the
body of revolution, are those of a prolate spheroid of fineness
ratio 6. The same support was used for each body. The
couplings used to change the angle of attack were mounted
in the sting 11 inches downstream from the end of the body.
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F1aure 1.—Profiles of hodies tested.
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Except at the first three stations indicated in figures 1 (a)
to 1 (d), the pressure orifices were located around the body as
shown in figure 1 (e). These orifices were spaced 15° apart
on one side of the body in order to obtain a fairly accurate
normal-force coefficient upon integration of the pressure
coefficients. The orifice at the first station was located in
the nose. The orifices at the next two stations were located
at 90° intervals around the body. The pressure orifice
openings were 0.010 inch in diameter.

TESTS

The pressures about the bodies were measured in the
Langley 8-foot high-speed tunnel through the Mach number
range 0.3 to 0.95. The angle-of-attack ranges were 0° to
7.7° for the regular bodies and 0° to 2° for the prolate
spheroid with an apnular bump. The pressures were re-
corded by photographing a 10-foot 100-tube manometer
board filled with acetylene tetrabromide.
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TABLE I.—ORDINATES OF THE TYPICAL TRANBONIOC
BODY AND OF THE ANNULAR BUMP PROLATE SPHEROID

Transonic body ng’g s h"{(’uﬁ:‘m

71, percent | 7/, percent | 2/1, percent | /1, parcent

o
—
=3

0.00 0. 000 0.00 0. 000
.50 .462 .75 1.437
75 598 125 1854
1.26 854 25 2. 604
2.5 L 445 5.00 3. 631
5.00 2. 409 10.00 5.000
10.00 3. 840 12.50 5. 560
20.00 6.180 12,01 5.684
30.00 7.480 13.3 5.873
40.00 8.121 14.16 0.408
50.00 8.333 15.20 7.230 .

60.00 8.162 16.H 7.800
70.00 7.635 17.49 8.100
75.00 7.215 17.091 8,230
18.74 8.280
8.230
8.220
8.000
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The free-stream pressures and Mach numbers were deter-
mined from an empty-tunnel calibration based on the
pressures at an orifice located 4 feet upstream. of the model.

Several preliminary plots of local pressure coefficients as

| functions of free-stream Mach number showed considerable
" geatter for Mach numbers less than 0.5, probably because

of the difficulty of reading the small pressure differences and
because of the possibility that the tunnel was not held at
each Mach number a sufficient length of time to insure com-
plete settling of the manometer liquid. Because of this
scatter, it was necessary to neglect the pressure coefficionts
below M,=0.5 in extrapolating the pressure-coefficient curves
to a stream Mach number of zero. The data used in the
analysis in this investigation were picked from the extra-
polated curves.

For the tests reported herein, the Reynolds number varies
from -approximately 2,700,000 per foot at My=0.40 to
3,950,000 at My=0.94.

The wall interference may be approximately determined
by using the equations of reference 6. Since the corrections
were small, they were not applied to the pressures in the
figures which present experimental data alone; however, the
corrections, even though small, were applied to the experi-

~ mental data used for the comparisons between the theoretical

and the experimental values.
THEORETICAL METHODS

The theoretical subsonic pressures about a prolate spheroid
may be computed by applying the Prandtl-Glauert correction
to the incompressible potential-flow equations in the manner
suggested in reference 7. In this solution of the linearized
form of the equations for compressible flow, the body is
stretched in the free-stream direction by the factor 1/8; the
induced velocity components u—U, », and w about the
stretched body are computed by potential-flow’ methods
(for prolate spheroids, see ref. 5); and the induced velocities
u—~—U, v, and w are corrected by the factors 1/8% 1/8, and 1/8,
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respectively. The corrected velocities are the compressible
velocities at the corresponding points on the original body.
The following formula, as is shown in appendix A, is the
result of the application of this method to the flow over
prolate spheroids:

2
V? 1{1 H,,

g a., K, ? sin’ o sin? ay,

-Gl

(Kb sin?  sin? a,,+ g, 2
f 11

.__(H"F"> 2K," sin? w sin? a.,:l} (1)

1

where
Foi=+/1—p? o8 ap—p~1—e,° COs w siDl oy,
Gat= 1 _6112#2

Hy,=+1 1—piK, a,, COS a,;—le-—e,,iKb" co2 w sin ay,

(10g 1+ell 263[
Kay= ( 1 +€u> 2€,,
1

—€g

2
— €4y

(1og 1+e,)__2en

. 1 — €4 1 _6812
I{b”—l (]O 1+e" _29”(1—‘23332) )
g 1—ey 1—e/

eu:Jl —_

tan o, ;=4 tan «

The pressure coefficients may be computed from the fol-
_ lowing relation:

—1 =
[t ()T

2

Because of the nature of the transformation, equation (1)
does not hold for large angles of attack (that is, where
a=sin a ceases to be a fair approximation) or for bodies
of small fineness ratio.

The compressibility effects indicated by application of the

linearized theory of compressible flow to prolate spheroids

are not apparent from equations (1) and (2). The effects
may be shown simply for the special case of the center of a
prolaie spheroid at zero angle of attack.. As shown in
appendix B, the following relation is obtained:

P (., logg ':f‘ Sfi—log 2f :
P¢—<1 +iTlog 2f> — B¥(log 2f—log B) ®
Thus, the theoretical solution indicates that the ratio of the

compressible pressure coefficient to the incompressible pres-
sure coefficient on bodies of revolution will vary conformably
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with & function of log 8 and f rather than with 1/8 as in two.
dimensional flow. HEquation (3) may be reduced to the form

P, log 8

P,_l +—="— T—log 27 which is presented in reference 8.
Another and easier method of obtaining an approximate
solution of the linearized equations for very thin bodies may

be found in references 2 to 4. This method consists of in-

.tegrating an approximated source-sink distribution to ob-

tain the induced-velocity ratios from which the pressure
coefficients may be computed. Since the source-sink dis-
tribution is approximated by the derivative of the cross-
gectional area with respect to the length of the body, this
method is more generally applicable to bodies of revolution
than is the method of applying the Prandtl-Glauert correc-
tion to the exact incompressible-flow solution. It is shown
in appendix A that, for prolate spheroids at zero angle of
attack, this method gives the following result:

1 [
z\3? r z? r2
W(-5) ey WEten
z z\? 72
1-54/(1-5) +5°
l l l
z 2 L, r? @
—-TI- T;-l-ﬁ Vil .

Two approximate forms which show the effects of com-
pressibility can be obtained from equation (4) by considering
(a) the difference, (P,—P,), and (b) the ratio P./P; of the

compressible and the incompressible values. These two
- R2
relations may be reduced to the following forms when B

log

NzE
. . . x x?
is considered small with respect to <1 -7 or ViE
P2t (®)
B, log B
- P, 1_E_l—log 2f (6)

Both relations indicate that the effect of compressibility on
the subsonic flow about a body of revolution at any given
Mach number is to lower the pressure coefficients over a
large part of the body These relations for the effect of
compresmblhty are in accord with sumlar equations pre-
sented in references 2 and 3.

RESULTS AND ANALYSIS

COMPARISON OF EXPERIMENTAL AND THEORETICAL PRESSURE
DISTRIBUTIONS
The local pressure-coefficient distributions are presented
in figures 2 to 6 for various values of free-streamn Mach
number. Figures 7 to'9 are replots of some of the data of the
preceding figures corrected for wall interference, together

with results of the theoretical calculations by means of

equations (2) and (4). Figures 2 to 6 show a decrease in the
experimental pressures over the central part of the body
with increasing Mach number, as predicted by equation (5).
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However, figures 7 to 9 indicate that the linearized theory
predicts a decrease in the pressures over the entire body,
whereas the experimental data show that & point on the body
exists ahead of which the pressures increase rather than
decrease. (See also figs. 2 to 6.) The lack of agreement of
the linearized theory with the experimental results near the
nose of the body is to be expected because of the assumptions
made in its derivation. It might be pointed out that the -
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effect of compressibility on the experimental pressure co-
efficients is approximately to rotate the pressure-coefficient
distributions about the point at which the incompressible
pressure coefficient is zero. The actual point about which
the rotation may be considered to take place shifts its
location from slightly downstream of the stream-pressure
point on the top of the body to slightly upstream of the
stream-pressure point on the bottom of the body.
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Pressure coefficient, P

Figore 4.—Continued.
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Fiaurs 4 —Concluded.
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As the flow approaches and exceeds the critical stream
Mach number, a further change in the pressure distributions

occurs. This change of shape (figs. 2 to 5) is essentially a-
rearward movement of the negative pressure peak. The .

nature of this change is emphasized in the plots for 4,=0.950
of figures 7 and 8. These figures show that the linearized
theory does not predict the shift in peak pressures which
occurs as the flow becomes supercritical.

The rearward shift of negative pressure peaks which occurs
on the top of the body (figs. 3 (a), 4 (8), and 5 (a)) seems
to be changed to a forward shift on the bottom of the body
(figs. 3 (c), 4 (c), and 5 (c)). It is reasonable to assume
that part or all of this forward movement of the bottom
negative pressure peak may be explained by the positive
pressure field which exists ahead of the under part of the
sting support. )

A comparison of figures 7 and 9 shows that the linearized
theory gives better results-for the body of larger fineness
ratio. The pressures about the prolate spheroid of fineness
ratio 10 are in better agreement with theory even for the

stream Mach number of 0.950 than are the pressures about -
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the body of fineness ratio 6. It may also be observed that
the theoretical pressures about the prolate spheroid of fine-
ness ratio 10, which are calculated by the two different
methods, are in excellent agreement; thus, these results
show that, for bodies of fineness ratios of 10 or greater, the
simpler method of computing pressures presented in refer-
ences 2 to 4 is fairly reliable,

INFLUENCE OF CHANGING NOSE SHAPE

The effects of changing the shape of the nose of & body
are seen by comparing figures 2 (a) and 3 with figures 2 (¢)
and 5. The incompressible pressure distribution is changed
as may be expected. However, the nature of the effect of

‘compressibility is the same for this body as for the prolate

spheroid of fineness ratio 6. The incremental pressure
changes are almost the same, and the rotation and shifts of
pressure peaks are very similar for both bodies. This com-
parison shows that the effects of compressibility do not
depend to a great extent on body shape so long as the body
does not depart from the specifications required for the
application of the linearized equations.
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FraurEe 9.—Comparison of experimental and theoretical pressures of a prolate sphermd of fineness ra.tm 10 at zero angle of attack.

INFLUENCE OF FINENESS RATIO

The influence of fineness ratio on the effects of compressi-
bility may be observed by comparing figures 2 (2) and 3 with
figures 2 (b) and 4. These figures show that increasing the
fineness ratio reduces the changes in pressure caused by
varying the stream Mach number. This effect is predicted
by the linearized theory in equation (5). It may ealso be
observed that the pressure peaks are less prominent and do
not shift their location to the extent found for the bodies of
lower fineness ratio. The changes in the shape of the pres-
sure distributions are also reduced and comparable changes
oceur at higher Mach numbers. The delay in the change of
the shape of the pressure distribution is demonstrated by
comparing figures 7 and 9 at Ay,=0.95. For the prolate
spheroid of fineness ratio 6 a marked change in the pressure

distribution has already occurred, whereas for the body of
fineness ratio 10 the shape of the pressure-distribution curve
is almost the same as at lower Mach-numbers. A considera-
tion of the observed effects of increasing the fineness ratio
indicates that such a change definitely reduces the effects
of compressibility.

INFLUENCE OF ANGLE OF ATTACK

It may be shown by the use-of-the linearized theory that,
at least to a first approximation, the lift and moment forces
on a body of revolution are not affected by changes in Mach
number. (See ref. 4.) The validity of this prediction is
demonstrated in figure 10 which shows that the variation of
the normal-force coefficient with Mach number is small for
both the f=10 and f=6 prolate spheroids.
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Fiaure 10.—The effect of compressibility on the normal-force coefficients
over the forward half of two prolate spheroids of fineness ratios 6 and 10:

INFLUENCE OF AN ANNULAR BUMP

A study-of the effects of compressibility on the velocities
about an infinitely long body containing surface waves (ref.
9) shows that these effects become two-dimensional in nature
when the length of the surface waves becomes small with
respect to the body radius. Since an annular bump on a

- body of revolution approximates these conditions, the flow over
such a bump may also be expected to show two-dimensional
effects. An examination of figures 2 (d) and 6 shows
that the range of pressure coefficients found in the flow over
a prolate spheroid with an annular bump is of the same order-
as that found in two-dimensional flow. The two-dimensional
nature of the flow over an annular bump is furtlier demon-
strated by comparing the pressure coefficients with the Von
Kérmén relationship (ref. 10) for the effects of compressibility
on two-dimensional flow (fig. 11). Figure 11 shows fair
agreement between the Von K4rmén relation and the experi-
mental relationships for those regions of the body where the
flow does not separate and the slope of the body is reasonably
small; namely, the 8.33-, 11.5-, 13.6-, 16.5-, 17.9-, and 19.8-
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T1gure 11.—Eszperimental pressure distributions over a prolate

spheroid with an annular bump. a=0°.

. percent stations. The 15-percent station is highly irregular

and cannot be explained by either two- or three-dimensional
theories. The other stations are severely affected by separa-
tion phenomens. The Von Kérmén relation, however, fails
to explain the phenomena once the critical speed is oxceeded.
CORRECTION OF INCOMPRESSIBLE PRESSURE DISTRIBUTIONS FOR THE
EFFECTS OF COMPRESSIBILITY

Equations (5) and (6) suggest that an incompressible pres-
sure distribution might be corrected for the effects of com-
pressibility by considering a pressure-increment type of
function such as P,— P, or & rate-of-increase tiype of function
such as P/P,. In order to show whether the effects of com-
pressibility may be expressed by such functions, 2 number
of the pressures over the regular bodies at zero angle of
attack have been plotted in figure 12 in terms of P./P; and
P,—P, against z/l and M,. Tunnel-wall corrections have
been omitted, but the omission does not affect the conclu-
sions. An examination of both functions shows that, except
at supercritical Mach numbers, the values of P/P, and
P.—P, are roughly constant between the 25-percent and the

‘50-percent stations. Over the forward part of the body, the

values are more variable.
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The P./P, function becomes discontinuous in the neigh-
borhood of P;=0. This behavior may be attributed to the
fact that the pressure coefficient is zero at the incompressible
stream-pressure point and, since one of the effects of com-
pressibility is to shift the stream-pressure point, discon-
tinuities may be expected in the neighborhood of this point.
However, since the pressures in this region are small, a wide
variation in P/P; may be permissible without serious error
in the corrected results.

The P,—P,; correction may also be expectea to become‘

irregular in the region of the nose. The experimental curves
show that this function changes sign in the neighborhood of
the stream-pressure point so that any correction function of
this type should include the position on the body. However,
such a function cannot be obtained from the linearized

method as this method does not indicate the change of sign’

shown in the experimental data.
The experimental values of P.—P,; and PP, at the cen-
ters of the regular bodies are compared with equations (5)

and (6) in figure 13 in order to show the validity of the pre- .

diction. of the effect of compressibility by the linearized
potential-flow theory. It is observed that equation (6)

26 [ 1 I [
’ o f=6; Prolate spheroid
0 f=6; Ogive
¢ £=10; Prolate spheroid °
22
R/P 7/
=6 \ A _ log B RN
18 r=10{ 7 =" Toiog 27 (eq.(6))
——R/F =\/B A Z
%
14— P /lo
// // . 4
- —T
B
10
f6\1p_p 2198
iR )a-A = S2E (e o) S
-08
o
aF /(/,’
—.04
By
L7
(o]
e v 4’/%/?

0 .2 4 6 8.. 10
Free-stream Mach number, Mp

Fraore 13.~—Theoretical compressibility correction functions com-
pared with experimental results. a=0°; =50 percent,
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within its limitations predicts the effects of compressibility\

0

for three-dimensional flow whereas the relation ;—f%:
which is used to predict the compressibility effects of two-
dimensional flow, does not. It may also be observed that
equations (5) and (6) predict the effects of compressibility
with about the same degree of accuracy.

The correction functions are applied to several incompres-
sible pressure-coefficient distributions in figure 14, which
are compared with the corresponding experimental distribu-
tions. Itisshown in figure 14 (a) that increasing the fineness
ratio of the prolate spheroid from 6 to 10 or reducing the
bluntness of the nose, which is the essential difference between
the ogival body and the prolate spheroid, extends the region
of the body for which corrections can be made from the
20-percent station for the prolaté spheroid of fineness ratio 6
forward at least to the 10-percent station for the sharper-nose
bodies. The P./P, function expresses the effect of compres-
sibility more accurately in the vicinity of the nose than does
the P.—P; function. This result is to be expected since one
of the effects of compressibility already noted is the rotation
of the pressure distribution, which is accounted for by the

© PP, expression but not by the P,— P, expression.

The increasing error which results from increasing the
stream Mach number is shown in figure 14 (b). At
M,=0.800, the incompressible pressure coefficients about the
fineness Tatio 6 prolate spheroid may be corrected with a
fair degree of ‘accuracy as far forward as the 5-percent station.
As the Mach number increases, the divergence between the
corrected values and the experimental values in the region
of the nose increases and, with still greater Mach numbeis,
tends to spread toward the center. At M,=0.940, which is
supercritical for the prolate spheroid of fineness ratio 6, the
correction formulas are still applicable at the center, so that
successful extrapolation of the linearized theory into the
supercritical range is found to depend on the section of the
body to which the extrapolation is applied.

As may be expected, the success of the linearized theory in
expressing the effects of compressibility decreases as the
angle of attack increases. The principal reason for this
result is that an angle of attack involves a pressure peak on
the forepart of the top of the body, which moves rearward
when the stream Mach number approaches and exceeds the
critical value for the body. Since the correction formulas
either rotate or translate the incompressible pressure distri-

‘bution, they cannot express this change in the shape of the

pressure distribution. This phenomenon is demonstrated
in figure 14 (c), which presents a comparison of the corrected
pressure-coefficient distributions and the experimental dis-
tributions of the flow about the prolate spheroid of fineness
ratio 6 at several angles of attack. Even though the shift of
the peak pressure is not accounted for in the correction for-
mula, the corrected distributions are not seriously in error
at the peaks and the agreement improves over the midportion
of the body. Thus, if some error is permissible, these for-
pulas may be applied for angles of attack as high as 7° or 8°.
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Figure 14 (c) indicates that equation (6) does not correct 3. The correction formulas
as satisfactorily over the central parts of the body at angles P, 1+ log B .
of attack as equation (5). This lack of agreement is due to ’ P, 1—log 2f
the compressibility effect on the lift forces. It has already | and 1
been shown that the lift forces are not much affected by PC_P‘=2 }’zg B

compressibility; hence, the increments of the pressure’
coefficients due to compressibility are about the same for
the top and bottom of the body. Since the absolute values
of the pressure ~coefficients are less on the bottom of the
body and greater on the top than if the lift forces had not
been present, equation (6) will overcorrect the pressure
coefficients on the top and undercorrect those on the bottom.
The same reasoning shows that equation (5), which gives
a constant increment over the entire body, will express the
compressibility effect with an angle of attack better over
the central part of the body to which it apph% than will
equation (6).
CONCLUSIONS

The results of the tests made on several bodies of revolu-
tion have shown the following effects of compressibility on
three-dimensional flow:

1. In general, the compressibility effect is to increase the
pressure differences over a body of revolution. The pressure
distributions are approximately rotated about & point near
stream -pressure and the negative-pressure pesks are moved
rearward.

2. The linearized modification of the compressible
potential-flow equation will predict the pressures over the
central part of the body but will not predict the changes in
pressure shead of the stream-pressure point nor will it pre-
dict the change in shape which occurs with supercritical flow.

(where P, and P, are the pressure coefficients for compres-
sible and incompressible flow, respectively, f is the fineness
ratio, and B=+1—M,® in which A, is the Mach number)
may be used approximately to correct incompressible-flow
pressures over the central part of streamline thin bodies of
revolution; the errors will increase as the supercritical Mach
number is approached and exceeded. Since P./P; rotates
the pressure distribution, this correction is better to use at
zero angle of attack; however, the form P.—P; expresses
the effects of angle of attack more correctly and should be
used when an angle of attack other than zero is involved.

4. The effects of compressibility are approximately thesame
for various bodies of the same fineness ratio, provided the
body shape satisfies the requirements of the linearized theory.
" 5. Increasing the fineness ratio tends to reduce the ecffects
of compressibility.

6. The effects of compressibility on an annular protuber-
ance of short chord on a body of revolution tend to follow
more mnearly two-dimensional laws than three-dimensional
laws.

7. Lift forces and moments over the forward part of the
body are relatively unaffected by compressibilitg(.

LANGLEY ABRONAUTICAL LLABORATORY,
NaTionarL Apvisory CoOMMITTEE FOR AERONAUTICS,
LawerLeY Fiewp, Va., November 6, 1961.



APPENDIX A

DERIVATION OF THE EQUATIONS FOR THE COMPRESSIBLE PRESSURE COEFFICIENTS OF THE FLOW ABOUT A PROLATE
SPHEROID

The solution of the linearized compressible-flow equation
for a prolate spheroid requires & derivation of the relation
for the incompressible velocities about the body. The in-
compressible velocities about a prolate spheroid are defined

by the potential equations given in reference 5. These
equations may be combined and written
e=Upt cos a+ 4 (cos a)p.<2 ¢ log H_l 1>+
B (sin a)yI—p3T=1 (51 S{ﬂ Sj_ 1) cose (7)

The values of the constants A and ‘B which satisfy the
required boundary conditions are

U
A=— __1 Sotl
So'—1 i‘o—l

U
B i'o 10g§‘0+1
So($o®— 1) 2 $o—1

where 3‘0' is the value of the coordinate which represents the
body. It may be shown that the eccentricity of the ellipse

=/~ lf b _.%. where [ and 2b are the lengths of the major

and minor axes of the prolate spheloid Since the fineness

[

ratio f is equal ‘to /20, e—\/ 1——~ The incompressible

velocity components obtained by differentiating the potential
equation are

* _ . 5 __ﬁ N
u_ﬁ 1 # KCOSa ”‘/( p'(l ¢ K, coswsin a
* — —
.'%—],—_-—“‘(11__“221, eg)Kacoswcosa
207
—I— (1 62’)KbCOE.cv.’sula-I—I{;gS.lesmoz > (8)
_ -_ -
z[o] ”'(1 _“:)ELI ¢) K,sinwcosa
w1 —e) ‘
+1 — # Kpsinwcoswsin a—K,sin w coswsin a
u? J
where

log(}iﬁ)_
K,=1— og (lj‘_e) 1—6
log 1+e> _1_2;6T

_log 1 +e>_9e(1 —2¢)

T (9

Ky=

and v*, »* and w* are the velocity components n & coordi-

nate system alined with the z-axis of the body. These
velocities are transformed to the u, » and w components by the following equations:
. * *
%=%— cos a+% sin «
* *

—l%= —%— sin a—l—PU— cos a - (10}

w_w*

U U

~ -
With the preceding transformation, the velocity equations (8) become
%:I:le—i? (v1=p?cos a—p+/1—e? cos w sin @) (v1—p* K, co8 a—pu+/1—e* K, €08 w sin o)+ K, sin’e sin’a
%:-T_Lez—-—z (1—p?sin atp+/1—e? cos w cos ) (y/1—u? K, cos a—p+/1—e? K, cos w sin o)+ K, sine cos « sin « (11)
%= vl snn w(y/1—p® K, cos8 a—p+/1—e? K, cos w sin o)— K, sin w €08 w sin «
L,
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These equations may be rewritten more simply by setting
=/1— 1 cos a—in—_e’ €os o sin «
Fy=1—p% sin a+p1—€ cos w cos a
H=1—12 K, ¢0s a—py1—¢ K, cos w sin a

G=1—é?
Then
%‘ F-‘ﬁ-H—l-_Kbsm’w sinfa
%——E—FIQ sin’w cos « sin « » (12)
w_ BH '
i a KbsmwcosmsmaJ

The method of correcting for compressibility discussed in
the text can now be approximately applied by increasing the
fineness ratio by 1/8 and reducing the tangent of the angle
of attack by the factor 8. ~Thus,

2
_ e.,=‘/ 1 —% (13)
and
tan «,,=p tan « (14)

where ¢,; and «;, are the eccentricity and the angle of attack
of the stretched body. Although this stretched.body differs
slightly from the properly stretched body, the approximation
is very close for large fineness ratios and small angles of
attack. It may be shown that the properly stretched body
is an ellipsoid having three unequal axes; however, under the
present restrictions the two minor axes are very nearly
equal, so that only small errors will be caused by the above
approximation of the stretched body.

The induced. velocities in compr&ssnble flow are-now de-
termined by substituting «,, and e, in equations (11) and

multiplying the resulting velocity increments %-— 1, g:; and %
‘ by the factors 1/8% 1/8, and 1/B, respectively, or

®=43).-)
OE IO
@@ )

The pressure coefficients for compressible flow may be com-
puted from the velocities by the following formula:

o

(15)

e [1- () ]

g Mg
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h -
where 2 u . 2 P 2 W 2
@).=@).+@).+(®). o)
Combination of equations (12), (15), and (16) yields
' 2
1 [.[;:—% {1 HGZ Kb” *w SlIl Clgg—
_HnFu llFll —
F)[ (75 +(Bousintwsint et EigY
%ﬁ{ﬁ) — 2K, sin® u sin? a:l} ()

where the subscript st is used to indicate that the various
functions so identified are based on the values of ¢ and «
associated with the stretched body. (See eqs. (13) and (14).)
A simpler first approximation may be obtained by consid-

- ering the approximate relation

_ u~U
- Pe==2(~),

(7°)=#@).~]

k Pc=—-§-§ (H:lf’ll__l_'_Kb“ sinﬂ w—SiIl2 a”> -‘

Since

(18)

A simpler equation may be developed for the pressures
over a prolate spheroid at zero angle of attack by consider-
ing the method of approximate source-sink distributions
described in references 2 to 4. In these references, it is
shown that

P =;2 u—U) f S'(¢)(z—0t)dt
= T ). 2xo la— T2
where ¢ i3 a coordinate along the major axis of the body and

S’ (¢) is the derivative of the cross-sectional area of the body
with respect to {. For a prolate spheroid,

(19)

242
8= ,_471’lb 5_411'; L
from which
(4 4752 2t
S'(t) d[S( )] 7" < )
Thus

(1 ‘) @—0)dl

2y
f a0+ BT

After integratlon end collection of terms

ot
c fl \/<1_T> + 75 \/12+‘3

1——+\// 2 +ek

l+’\/lz+ﬁz lz

(20)




APPENDIX B

REDUCTION OF PRESSURE-COEFFICIENT FORMULAS TO OBTAIN SIMPLE FUNCTIONS FOR CORRECTING
INCOMPRESSIBLE PRESSURE DISTRIBUTIONS FOR THE EFFECTS OF COMPRESSIBILITY

Two functions which may be used to express the relation
between the pressure coefficients in compressible and incom-
pressible flow are the ratio and the increment between the
two coefficients P, and Py; that is, P,/P; and P,—P,. Both
functions may be expressed in simple equations by substitut-
ing the pressure-coefficient functions for the midpoint of the
body into both the ratio function and the increment func-
tion. In order to simplify equation (17) let p=0, sin o, =P,
and K, =1—k,, or k,,=1—K,,, Then,

2
1 s | 2B I, (1= (R, B2 — 2R | (21)

For small values of 1——;

V2
P¢= 1 —"m
Also, for large values of f
Kbn—)z

Hence
., 3 - T
Po=ﬂl§ [2‘:‘“'—&5—;‘_4“2(1 —89 (Bzai—k‘”)'_

Since =1 at My=0

) i}
- [2ku—%—;-—4a"(l—ﬁz)(ﬁ2 ' I,)
P{ ﬁz 2k1—k12 *

Since 4a*(1—p%)(8*e*—k,.) is small compared with 2k,,, the
term containing & may be neglected ; thus

P, 1k 2ty
. 1k,
P B 2=F (22)

In order to reduce this equation to previously published
forms (refs. 4 and 8), it is necessary to reduce k:

14-¢

lOg T?G- —2e

k=1—K,=

1+e¢ 2¢e
log <1ie T1=¢t

2 3
Substituting e, =1 -—-?—2 and the approximate form e,,=1 —-2‘B—f,
in this equation gives :

B? (log 2f—log —1)
ke =FrTog 27— 5" log —1* @)

and

_log2f—1
log 21— @4

These equations show that both %,,/8* and %, are of order of
magnitude 1/f* and, therefore, small with respect to 2.
Hence, the approximation (see eq. (22)).

Pe_ 1k
P:-Bﬂ ki (25)
ig- valid.
If equations (23) and (24) are used in equation (25), the
following equation is obtained: :

P, log 8 f*—log 2f
P, (1 T og 2f) [f’—ﬂ’ Tog 27—Tog B O

or for large fineness ratios

P,
P,

log 8
150z 27 @7

which may be changed to its equivalent form
p—P—2258 ' (28)

Equation (20) obtained by the source-sink-distribution
method will also reduce to equations (27) and (28) for the
central part of the body.
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